Hi
Elemental fields are not constant here. Within each element there is a different value at each node. So this is as in "discontinuous galerkin" method. This way the code can in principle maintain some accuracy when using higher order edge elements. Of course for lowest order edge elements the \curl of the vector field is more or less constant within element so the only purpose of the elemental DG field is that it maintains the discontinuity of the data.
-Peter
How to output user defined variable to the vtu file?
Re: How to output user defined variable to the vtu file?
Hi, Peter
Thank you so much for the answers! I understand now!
I revised the code as:
Now only the transient loss of elements belong to electrical steel are solved, as shown in the following figures.
Fig 01
Fig 02
Fig02 shows that the core loss in the air gap has been removed.
Now I would continue multiplying the core loss per volume with the area of each element.
Thank you again!
BR
Jenwel
Thank you so much for the answers! I understand now!
I revised the code as:
Code: Select all
DO i = 1, GetNOFActive()
Element => GetActiveElement(i)
Bnode1 = sqrt(EL_MFD % Values(EPerm(Element % DGIndexes(1)) * 3 - 2)**2 + &
EL_MFD % Values(EPerm(Element % DGIndexes(1)) * 3 - 1)**2)
Bnode2 = sqrt(EL_MFD % Values(EPerm(Element % DGIndexes(2)) * 3 - 2)**2 + &
EL_MFD % Values(EPerm(Element % DGIndexes(2)) * 3 - 1)**2)
Bnode3 = sqrt(EL_MFD % Values(EPerm(Element % DGIndexes(3)) * 3 - 2)**2 + &
EL_MFD % Values(EPerm(Element % DGIndexes(3)) * 3 - 1)**2)
! Find Constants
Hc = GetConstReal(Model % Constants, "Hc", Found)
IF(.NOT.Found) CALL Fatal("CoreLossSolver", "Unable to find Hc")
Kh = GetConstReal(Model % Constants, "Kh", Found)
IF(.NOT.Found) CALL Fatal("CoreLossSolver", "Unable to find Kh")
Keddy = GetConstReal(Model % Constants, "Keddy", Found)
IF(.NOT.Found) CALL Fatal("CoreLossSolver", "Unable to find Keddy")
IF (CurrentTimeStep>1) THEN
IF ((Element % BodyId == 19) .OR. (Element % BodyId == 21)) THEN
dB = Bnode1 - PrevB_E(EPerm(Element % DGIndexes(1)))
PrevB_E(EPerm(Element % DGIndexes(1))) = Bnode1
Phys_E % Values(EPerm(Element % DGIndexes(1))) = Hc * ABS(dB/dt) + Kh * Babs * ABS(dB/dt)
Peddy_E % Values(EPerm(Element % DGIndexes(1))) = Keddy * (dB/dt)**2
Pcoreloss_E % Values(EPerm(Element % DGIndexes(1))) = Phys_E % Values(EPerm(Element % DGIndexes(1))) +&
Peddy_E % Values(EPerm(Element % DGIndexes(1)))
dB = Bnode2 - PrevB_E(EPerm(Element % DGIndexes(2)))
PrevB_E(EPerm(Element % DGIndexes(2))) = Bnode2
Phys_E % Values(EPerm(Element % DGIndexes(2))) = Hc * ABS(dB/dt) + Kh * Babs * ABS(dB/dt)
Peddy_E % Values(EPerm(Element % DGIndexes(2))) = Keddy * (dB/dt)**2
Pcoreloss_E % Values(EPerm(Element % DGIndexes(2))) = Phys_E % Values(EPerm(Element % DGIndexes(2))) +&
Peddy_E % Values(EPerm(Element % DGIndexes(2)))
dB = Bnode3 - PrevB_E(EPerm(Element % DGIndexes(3)))
PrevB_E(EPerm(Element % DGIndexes(3))) = Bnode3
Phys_E % Values(EPerm(Element % DGIndexes(3))) = Hc * ABS(dB/dt) + Kh * Babs * ABS(dB/dt)
Peddy_E % Values(EPerm(Element % DGIndexes(3))) = Keddy * (dB/dt)**2
Pcoreloss_E % Values(EPerm(Element % DGIndexes(3))) = Phys_E % Values(EPerm(Element % DGIndexes(3))) +&
Peddy_E % Values(EPerm(Element % DGIndexes(3)))
END IF
END IF
END DO
Fig 02
Fig02 shows that the core loss in the air gap has been removed.
Now I would continue multiplying the core loss per volume with the area of each element.
Thank you again!
BR
Jenwel
Re: How to output user defined variable to the vtu file?
Hi, Peter
I want to ask that how can I obtain the area of each element in "CalcFields.F90"? Is there a variable that denotes the area of the element, in m^2 for the 2-D element?
Thank you in advance!
BR
Jenwel
I want to ask that how can I obtain the area of each element in "CalcFields.F90"? Is there a variable that denotes the area of the element, in m^2 for the 2-D element?
Thank you in advance!
BR
Jenwel
-
- Site Admin
- Posts: 4529
- Joined: 22 Aug 2009, 11:57
- Antispam: Yes
- Location: Espoo, Finland
- Contact:
Re: How to output user defined variable to the vtu file?
Hi
The total Joule heating calculate below illustrates how to integrate over the mesh:
So the contribution in each Gaussian integration point is multiplied by the value of Basis function and integration weight times the element metric detJ. For linear element detJ is the area/volume of the element. This code was taken from CalcFields routine where you can see these lines in context.
-Peter
The total Joule heating calculate below illustrates how to integrate over the mesh:
Code: Select all
Loop over elements
Loop over integration points
s = IP % s(j) * detJ
! The Joule heating power per unit volume: J.E = (sigma * E).E
Coeff = SUM( MATMUL( REAL(CMat_ip(1:3,1:3)), TRANSPOSE(E(1:1,1:3)) ) * &
TRANSPOSE(E(1:1,1:3)) ) * Basis(p) * s
Power = Power + Coeff
-Peter
Re: How to output user defined variable to the vtu file?
Hello Jenwel,
Can you please share your updated Solver version?
Best regards,
Gabriel
Can you please share your updated Solver version?
Best regards,
Gabriel